Физики из Австрии и США опубликовали результаты опроса своих коллег по поводу того, как они понимают квантовую механику. Результаты оказались противоречивы — несмотря на то, что классическая копенгагенская интерпретация все еще чувствует себя довольно бодро, к ней постепенно подбирается теория квантовой информации. Гипотеза же многих миров сдает свои позиции.
История квантовой механики начинается в конце XIX века, когда статистическая физика столкнулась с парадоксом, получившим название ультрафиолетовой катастрофы. Столкновение это было тем более неожиданным, что речь шла про, казалось бы, простую физическую задачу: описание излучения, связанного с нагревом тела, — будь то металл, камень или уголь в камине. Скажем, хорошо известно, что свечение нагретого металла с ростом температуры меняется от красного к светло-голубому. Почему это так?
Оказалось, что решение этой задачи сводится к изучению излучения так называемого абсолютно черного тела, абстракции, представляющей собой тело, которое поглощает все упавшее на него излучение. Название, как оказалось, было выбрано довольно неудачно — например, с достаточной степенью точности абсолютно черным телом можно считать Солнце.
И в этот момент физики столкнулись вот с чем: модель излучения, которая была у них на руках (так называемый закон Рэлея-Джинса) неплохо описывала излучение для длинных волн, но для коротких не работала совершенно. Более того, она давала невозможный результат: энергия, излучаемая телом, равна бесконечности. Этот парадокс и получил имя ультрафиолетовой катастрофы.
В 1900 году Макс Планк предложил совершенно неочевидное объяснение тому, что результаты экспериментов с короткими волнами противоречат теории — правда, сам термин «ультрафиолетовая катастрофа» появился только в 1911 году, а бесконечность энергии была обнаружена Рэлеем и Джинсом уже после появления планковского объяснения. Планк заявил, что излучение испускается не непрерывно, как считалось ранее, а порциями (квантами). Энергия каждого кванта оказывается связана с частотой излучения простым линейным законом. На основе этих предположений он вывел свой закон излучения, который показал отличное согласование с экспериментальными данными и принес Планку нобелевскую премию по физике в 1918 году.
Обнаруженный закон невозможно было объяснить с точки зрения физики того времени, строго разделявшей две основные сущности — поля и частицы. Возник нетривиальный и, скорее, философский вопрос: если физика описывает нашу обычную действительность, то какую действительность описывают новые уравнения? Так вместе с квантовой механикой (именно с момента публикации работы Планка многие отсчитывают историю новой физической теории) появилась и проблема интерпретации квантовой механики.
Сначала, конечно, странность уравнений Планка не вызывала у физиков особого волнения — им казалось, что здание физики незыблемо, поэтому странные уравнения найдут объяснения в рамках классической теории (сами физики, конечно, свою физику классической еще не считали — тем же уравнениям Максвелла не было тогда и 20 лет). Более того, с порционностью физикам уже приходилось сталкиваться: идея существования мельчайшей неделимой порции электрического заряда, равной заряду электрона, на тот момент была общепризнанной.
Ситуация с квантами усугубилась в 1905 году. Дело в том, что в 90-х годах XIX века физики активно изучали фотоэффект — явление испускания электронов веществом под воздействием света. На основании экспериментов им удалось установить несколько эмпирических законов. В 1905 году Альберт Эйнштейн предложил объяснение всем этим законам, распространив теорию порционного излучения Планка на свет. Получившаяся теория вновь давала прекрасное согласование с экспериментальными данными и вновь не помещалась в классическую картину мира.
Спустя буквально 20 лет научный мир находился в состоянии непримиримого противостояния. Суть разногласий сводилась к вопросу о том, насколько хорошо квантовая теория описывает реальность (сами уравнения и тот факт, что они прекрасно работают, ни у кого возражений не вызывали). Противники молодой физики утверждали, что все эти корпускулярно-волновые дуализмы (свойства материи быть частицей и волной одновременно) и прочие противоречащие тогдашнему здравому физическому смыслу объекты являются просто следствием несовершенства математического аппарата. На стороне классиков сражались Эйнштейн, Планк, Шредингер. Последний, кстати, придумал своего кота как раз для того, чтобы продемонстрировать абсурдность новой теории.
Адепты же квантовой механики отстаивали реальность всех этих загадочных явлений (хотя позже стало понятно, что и среди этих ученых имеются серьезные разногласия). В период с 1924 по 1927 год Нильс Бор и Вернер Гейзенберг, одни из главных защитников «новой физики», сформулировали основные положения «реальности» в смысле квантовой механики. Эти положения были представлены широкой научной общественности в 1927 году, когда Гейзенберг прочитал серию лекций в Чикагском университете о том, что из себя представляет квантовая механика. Так на свет появилась копенгагенская интерпретация квантовой механики (и Бор, и Гейзенберг в ту пору работали в университете Копенгагена) — самая, пожалуй, распространенная и популярная интерпретация.
Главным отличием микромира от привычного нам макромира провозглашалась вероятностная природа происходящих там процессов. Материя демонстрирует корпускулярно-волновой дуализм. Основным объектом описания системы становилась волновая функция, которая характеризует амплитуду вероятности обнаружить систему в том или ином состоянии в данной конкретной точке. Со временем волновая функция эволюционирует, и эта эволюция описывается так называемым уравнением Шредингера. По сути состояния системы оказываются «размазаны» по времени и пространству. Традиционно это интерпретируется как нахождение квантовой системы в нескольких состояниях одновременно.
В случае измерения происходит коллапс волновой функции к одному из классических состояний. Это связано с тем, что все измерительные приборы и все измерения в физике считаются классическими. По этой причине, помимо прочего, невозможно получить всю возможную информацию о системе. Иллюстрацией последнего положения является знаменитый принцип неопределенности Гейзенберга, утверждающий, что произведение неопределенностей при измерении импульса и координаты какой-нибудь механической системы всегда больше некоторого ненулевого значения. Наконец, последнее требование — для достаточно больших систем квантовое описание приближается к классическому.
Копенгагенская интерпретация позволила физике смириться с многими парадоксальными результатами наблюдений. Для примера можно рассмотреть так называемый двухщелевой опыт. Представим экран, который отгорожен от источника света светонепроницаемой поверхностью, в которой прорезаны две щели. Когда свет проходит через щели, на экране возникает последовательность светлых и темных полос — типичная интерференционная картина. Это связано с тем, что свет — волна и, проходя через щели, разделяется на пару волн, взаимодействующих между собой. При этом такая картина наблюдается и в случае пролета единичных фотонов.
Если у обеих щелей поставить детекторы, которые будут регистрировать проходящие через них фотоны, то срабатывать будет всегда только один из детекторов. Это и есть демонстрация корпускулярно-волнового дуализма. Более того, если один из детекторов убрать и не фиксировать прохождение фотона, интерференционная картина на экране все равно исчезает. С точки зрения копенгагенской интерпретации это является прямой демонстрацией того, что при измерении (пусть даже с отрицательным результатом) происходит коллапс волновой функции.
В середине XX века копенгагенская интерпретация считалась стандартным объяснением квантовой механики. Ситуация изменилась к концу века — в физике стали возникать вопросы, которые даже не приходили в голову классикам. Вот, например, волновая функция — это что? Удобный инструмент для описания или же некий реально существующий объект? Или, скажем, как быть с квантовой запутанностью?
В настоящее время вопрос интерпретации считается скорее философским, нежели физическим. Известный физик Ашер Перес — автор одноименного парадокса — считает, что интерпретации суть не более чем набор правил для оперирования экспериментальными данными, поэтому единственное требование, которое можно предъявить к интерпретациями — чтобы эти наборы правил были эквивалентны друг другу (среди прочего, это связано с тем фактом, что, как уже говорилось выше, математический аппарат у всех интерпретаций совершенно одинаковый).
В настоящее время помимо копенгагенской интерпретации существует несколько ранее считавшихся немного безумными или даже научно-фантастическими альтернатив, которые со временем уверенно подвинули классику. И это не считая типично инструменталистской интерпретации Дэвида Мермина, выраженной в знаменитом афоризме «Заткнись и считай».
Самой популярной из альтернатив является так называемая многомировая интерпретация, принадлежащая Хью Эверетту. Примечательно, что Эверетт оставил физику после нескольких работ, в том числе и из-за той критики, которой научное сообщество подвергло его взгляды. В основе многомировой интерпретации — отрицание реальности коллапса волновой функции, то есть разделения взаимодействий на классические и квантовые.
Для этого Эверетт ввел понятие квантовой декогеренции, суть которой, достаточно условно (пытаясь пояснить формулы словами, всегда сталкиваешься с некоторыми неизбежными упрощениями), заключается в том, что исследуемая система и наблюдатель — измерительный прибор — оказываются объединены в одну огромную (по меркам микромира) систему. Факт этого включения и приводит к кажущемуся ощущению «классичности» — ведь тезис о том, что большие системы должны быть похожи на классические, этой интерпретацией не отрицается. При этом каждый из возможных вариантов включения системы оказывается реализован. С точки зрения двухщелевого опыта, если за одной из щелей стоит детектор, то при подлете фотона к поверхности с прорезями Вселенная раздваивается. В результате в одной из реальностей наблюдатель регистрирует фотон, а в другой — нет. При этом все бесчисленные Вселенные оказываются частью некоего глобального квантового мира, который никогда не теряет своей когеренции.
Помимо многомировой интерпретации, есть еще и информационная интерпретация — точнее, даже несколько интерпретаций такого рода. В их основе лежит идея о том, что при измерении наблюдатель извлекает из системы некоторую информацию. Эта информация, с одной стороны, воспринимается как результат наблюдения, с другой — меняет саму измеряемую квантовую систему, поскольку та информацию теряет. Эти идеи носят идеалистический характер, поскольку помещают в основу реальности информацию, а не материю.
Наконец, последней интерпретацией, которую стоит упомянуть (на самом деле их много больше), это интерпретация Пенроуза. В ней коллапс волновой функции признается объективной реальностью, то есть физическим процессом. Согласно этой теории, коллапс происходит случайно, а сам наблюдатель никакой роли в этом процессе не играет.
В 1997 году известный физик и космолог Макс Тегмарк опросил 48 участников конференции «Фундаментальные проблемы в квантовой теории», чтобы выяснить, какая интерпретация этой самой теории кажется им предпочтительной. Несмотря на то, что опрос носил в целом неформальный характер, Тегмарк обнаружил, что многомировая интерпретация квантовой механики уступила копенгагенской, но не слишком (13 голосов против восьми). Это довольно неожиданный результат, если учесть, что в свое время, как говорилось выше, автор теории многомировой интерпретации Эверетт был вынужден уйти из науки.
Теперь сразу три физика из Австрии и США повторили опрос Тегмарка. Местом его проведения была выбрана конференция «Квантовая механика и природа реальности», проходившая в июле 2011 года в Австрии. Каждому участнику съезда предлагалось выбрать из предложенных ответы к 16 вопросам. Сами исследователи признают, что, как и опрос Тегмарка, их исследование носило не слишком формальный характер. Ученым, например, разрешалось давать на один вопрос несколько ответов. Кроме этого в исследовании приняли участие 33 человека — то есть на 15 меньше, чем в предыдущем опросе.
Оказалось, что 64 процента опрошенных уверены: случайность — это фундаментальное свойство природы. При этом 48 процентов заявили, что до измерения свойства объекта не определены. Это основные положения именно копенгагенской интерпретации. Что касается проблемы измерения — видимого и необратимого коллапса волновой функции — то тут мнения очень сильно разделились. Оказалось, что 27 процентов опрошенных считают ее псевдопроблемой (то есть математическим артефактом), еще 15 процентов полагают, что понятие декогеренции снимает вопрос об измерениях, 39 процентов думают, что эта проблема решена, и 24 процента — что эта проблема представляет серьезную трудность в квантовой картине мира. В сумме получается больше 100 процентов, но это именно потому, что можно было давать больше одного варианта ответа, а проценты считались как отношение количества ответов к количеству участников, помноженное на 100.
Наиболее интересными были ответы на вопросы о квантовой информации — оказалось, что 76 процентов опрошенных считают идею квантовой информации «глотком свежего воздуха» для основ квантовой механики. Довольно необычный сдвиг для физиков, известных своим прожженным материализмом. Еще у физиков спрашивали, когда появится квантовый компьютер, и 42 процента опрошенных заявили, что это произойдет через 10-25 лет.
Что касается самого главного вопроса: «какой интерпретации придерживаетесь вы?» — то тут результаты были следующими. Оказалось, что 42 процента поддерживают копенгагенскую интерпретацию, 24 процента — теорию квантовой информации и только 18 — многомировую интепретацию квантовой механики. Еще 9 процентов придерживаются интерпретации Пенроуза об объективности коллапса волновой функции.
Здесь, конечно, следовало бы сделать вывод о неожиданном укреплении позиций классики, которое, судя по всему, вызвано постепенным спадом интереса к многомировой интерпретации. Также можно было бы отметить популярность квантовой информации, которая, разумеется в ближайшее время будет только расти — ведь многие называют этот подход перспективным.
Делать эти выводы, однако, бессмысленно. Похоже, такого же мнения придерживаются и сами ученые — на вопрос «будут ли через 50 лет проводиться конференции по основам квантовой механики?» 48 процентов опрошенных ответили «да» и еще 24 — «кто знает». Действительно, кто ж его знает?