Группа ученых из Китайской академии наук впервые клонировали макак-крабоедов (Macaca fascicularis) тем же способом, что привел к рождению овечки Долли. Это подарило биологам возможность клонировать приматов, в том числе и человека. «Лента.ру» рассказывает об исследовании, опубликованном в журнале Cell.
Усилиями ученых на свет появились две самки — Чжун Чжун и Хуа Хуа. Обе самки здоровы и в настоящее время живут в инкубаторе. Разница в возрасте между ними составляет одну неделю, однако обе макаки являются генетическими идентичными копиями: они были получены из одной и той же культуры эмбриональных клеток обезьяны.
На самом деле эти макаки — не первые в мире клонированные обезьяны. В 1999 году исследователи клонировали макака-резуса путем раздробления эмбриона примата на несколько частей — в результате получились бы однояйцевые близнецы. В ходе другой работы клонированные клетки обезьян были использованы для создания линий стволовых клеток. Однако все это делалось исключительно в чашках Петри, и получение развитых обезьян в планы ученых не входило.
Почему же в 2018 году клонированные обезьяны считаются большим прорывом? Дело в том, что для этой цели использовалась техника, называемая пересадкой ядер соматической клетки. В отличие от дробления эмбриона, этот метод в теории позволяет получить неограниченное количество клонов от одного донора. А что может быть удобнее для биомедицинских исследований, чем генетически однородная популяция близких к человеку приматов?
Со времен овечки Долли ученые клонировали 23 вида животных, в том числе собак, кошек, кроликов, свиней и коров. Однако получение генетически идентичных приматов означает, что в принципе мы можем получить и человеческие клоны (хотя макаки и не относятся к человекообразным обезьянам вроде горилл или шимпанзе). Впрочем, ученые заверили, что цели клонировать людей у них нет.
Естественно, среди далеких от науки людей и противников клонирования могут возникнуть подозрения, что ученые неспроста решили вновь покуситься на законы природы — возможно, они осознанно или случайно создадут некое биологическое оружие, которое в конечном итоге погубит человечество. Однако не стоит забывать, что общий уровень смертности людей, включая всевозможных противников биотехнологий (от антивакцинаторов до ГМО-фобов), в конце XX — начале XXI века сильно понизился именно благодаря достижениям биологии и медицины. Хотя многие необоснованно опасаются клонирования, этот метод даст ученым небывалые возможности для создания новых лекарств.
Речь идет прежде всего о создании удобных модельных организмов. Макаки используются для исследований в области медицины, нейробиологии и поведения. Их геном на 93 процента идентичен человеческому (наш общий предок жил 25 миллионов лет назад), а различия во многом обусловлены геномными перестройками, а не отдельными мутациями. Иными словами, геном человека является своеобразной анаграммой генома макаки. В то же время те варианты генов, которые у макак являются нормальными, у людей могут вызывать заболевания — например, фенилкетонурию.
Клонирование позволяет получить чистые линии, то есть группы генетически однородных организмов. Этого можно добиться через скрещивание, но для обезьян с их относительно долгим периодом созревания такой метод непрактичен. Клоны очень удобны для тестирования лекарств. Представьте, что у вас есть несколько десятков особей приматов, и вы случайным образом делите их на две группы. Животным в одной группе вы даете лекарство, а в другой — пустышку. Казалось бы, если препарат эффективен, то состояние здоровья приматов в первой группе должно улучшиться. Но на самом деле результат может маскироваться генетическими различиями. Так, некоторые животные могут быть невосприимчивы к лекарству или, наоборот, оказаться слишком чувствительными, что вызовет их гибель. Для достоверных результатов приходится использовать большие группы животных, что сложно и дорого, однако чистые линии решают эту проблему.
Зачастую животные модели в медицинских исследованиях генетически склонны к развитию заболеваний, аналогичных человеческим: рак, различные виды деменции, болезнь Паркинсона, наследственные расстройства или аутизм. Именно на них испытывают новые терапевтические методы. Клонирование позволит исследователям быть уверенными, что у всех животных в группе из-за их идентичности точно разовьется то или иное заболевание.
Клонирование методом пересадки ядра соматической клетки осуществляется следующим образом. Из неоплодотворенной яйцеклетки удаляют ядро, после чего в нее пересаживают ядро от соматической клетки, например, от фибробласта (клетки соединительной ткани) эмбриона. Метод был разработан в 1996 году, когда шотландские биологи под руководством Яна Вильмута смогли клонировать овечку Долли. В качестве доноров ядер были использованы эпителиальные клетки молочной железы. Однако далеко не все яйцеклетки, которым трансплантировали ядра, выжили. Понадобилось около трехсот попыток, чтобы получить здоровый эмбрион.
Сложность клонирования обезьян заключается в том, что для каждого вида должны быть разработаны протоколы химической обработки ДНК донорского ядра, чтобы «омолодить» его. Ранние попытки пересадить ядро у приматов оканчивались неудачей именно из-за неправильного перепрограммирования клеток донора. Однако позже оказалось, что эффективность пересадки можно повысить с помощью ряда химических веществ, блокирующих активность ферментов деацетилаз гистонов. Кроме того, были определены устойчивые к перепрограммированию регионы ДНК — в них обнаружился высокий уровень метильных групп, препятствующих активации генов.
Для того чтобы понять, что именно сделали ученые, необходимо знать лишь самые основы эпигенетики. Гистонами называют белки различного типа, объединяющиеся в глобулу (нуклеосому), вокруг которой в 1,67 оборота наматывается часть ДНК. На одной нити ДНК находится большое количество нуклеосом, влияющих на плотность упаковки генетического материала и активность генов. Делают они это с помощью четырех хвостов, торчащих из двух гистонов H3 и двух гистонов H4. К разным участкам этих хвостов могут присоединяться как метильные (метилирование), так и ацетильные (ацетилирование) группы.
Существует великое множество типов метилирования гистонов, при которых к различным участкам хвостов присоединяется от одной до трех метильных групп. При метилировании, обозначаемом как H3K9me3, три группы (me3) присоединяются к девятой с конца аминокислоте, являющейся лизином (K), находящейся на хвосте гистона НЗ. На участке ДНК, обогащенном H3K9me3, гены, как правило, заблокированы. Похожим образом происходит ацетилирование, однако оно, наоборот, способствует активации генов.
Ацетилирование и метилирование необходимо для дифференцировки клеток, когда стволовые эмбриональные клетки выбирают свои «профессии». При этом включаются одни гены и выключаются другие. Оказалось, что H3K9me3 защищает гены, которые не нужны фибробласту, от повторной активации, что и является основным препятствием для перепрограммирования. Чтобы решить эту проблему, ученые использовали трихостатин А, который способствовал ацетилированию гистонов, а также внедрили в яйцеклетки с уже пересаженным ядром молекулу РНК, кодирующую деметилазу гистонов — фермент, убирающий с гистонов метильные группы.
Всего были использовано 127 яйцеклеток. Ученым удалось получить 109 эмбрионов, но только 79 из них были пересажены в матку 21 самки макака-крабоеда. Беременность была подтверждена только у четырех животных, но только две обезьяны родили здоровых детенышей.
Когда речь заходит о новых возможностях биотехнологий, на сцену выходят те, кто видит во всем этом не более чем атаку на этические нормы. Организации, выступающие в защиту животных, вообще считают эксперименты на животных (особенно тех, что похожи на человека) неприемлемыми — видимо, забывая тот факт, что именно благодаря животным человечество победило опасные инфекционные болезни, в том числе оспу, которая убила миллионы человек. Многих прорывов в области медицины не случилось бы без использования животных моделей.
Некоторые ученые, например, нейробиологи и этологи, считают, что животных в какой-то степени можно заменить компьютерными моделями, однако пока не существует технологий, позволяющих смоделировать целый организм и влияние лекарств на него. Даже культуры тканей (или выращенные «в пробирке» органы) не могут заменить животное, поскольку реагировать на препараты эти объекты будут совершенно по-разному. Так что вопрос, нужно ли для развития медицины проводить эксперименты на живых существах, требует, возможно, неудобного, но честного ответа: сейчас эти опыты необходимы.
Нужно ли бояться клонирования людей? Возможность делать генетически идентичные копии людей появится через несколько лет, хотя стоит подумать, для чего это делать? Очень сложно взять у взрослого человека ДНК и сделать его копию в виде младенца — без отточенной до совершенства техники перепрограммирования соматических клеток весь биологический материал от донора отправится в мусорное ведро. Тратить деньги на копии одних и тех же человеческих эмбрионов пока просто нецелесообразно. А клонировать Гитлера, Иисуса Христа или динозавра, от которых не осталось клеток с ядрами, можно лишь в жанре фантастики.