Ученые из США, Южной Кореи и Японии использовали сверхбыстрый (фемтосекундный) лазер для оперативного отслеживания изменений собственной энергии электронов и их взаимодействий в сверхпроводнике. Результаты своих исследований авторы опубликовали в журнале Nature Communications, а кратко с ними можно ознакомиться на сайте Национальной лаборатории имени Лоуренса в Беркли (США).
Узнайте больше в полной версии ➞Ученые применили фотоэлектронную спектроскопию с угловым и временными разрешениями для прямого измерения сверхбыстрых изменений собственной энергии электронов в процессе облучения высокотемпературного сверхпроводника на основе купратов.
Сверхпроводники — это особые материалы, которые при температуре ниже критической имеют нулевое электрическое сопротивление. В случае высокотемпературной проводимости такая ситуация может достигаться при минус 240 градусах Цельсия. Купраты Bi2212, использованные учеными, представляют собой соединения висмута, стронция, кальция и оксида меди и являются распространенным материалом для исследований высокотемпературной сверхпроводимости.
Ученые установили, что ниже критической температуры сверхбыстрые возбуждения такого материала вызывают синхронное снижение собственной энергии электронов и ширины сверхпроводящей щели. Выше критической температуры сверхбыстрые возбуждения не оказывали заметного влияния на взаимодействие электронов и бозонов (атомных ядер с четным числом протонов и нейтронов).
Сверхбыстрая спектроскопия является перспективным методом изучения квантовых свойств материалов. До сих пор вопросы изменения собственной энергии электрона в многочастичных сверхпроводящих системах не получали широкого освещения в работах ученых.
Специалисты считают, что техника сверхбыстрых возбуждений, продемонстрированная ими, позволит управлять свойствами материалов при помощи света, а также может найти применение в исследованиях корреляционных эффектов в сверхпроводящих твердых телах.