Впервые осуществлена безубыточная термоядерная реакция
В Ливерморской лаборатории впервые осуществили инерциальное термоядерное воспламенение
Александр Еникеев (Редактор отдела «Наука и техника»)
Министерство энергетики США объявило о достижении безубыточного термоядерного воспламенения в Ливерморской национальной лаборатории (LNLL). В ходе эксперимента, проведенного 5 декабря 2022 года, была впервые запущена управляемая реакция синтеза, которая генерировала в полтора раза больше энергии, чем было на нее потрачено. Об этом сообщается в пресс-релизе, опубликованном на сайте научной организации; подробно о научном прорыве рассказывает издание Nature.
Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). Реакцию запускали с помощью 192 лазеров, которые нагревали хольраумы — небольшие золотые цилиндры, внутри которых находится капсула со смесью изотопов водорода, трития и дейтерия. Лазеры подали 2,05 мегаджоуля энергии на внутреннюю стенку цилиндра, которая переизлучала ее в виде теплового рентгеновского излучения, вызвавшего взрыв внешней оболочки капсулы, направленный внутрь.
Как зародился комплекс National Ignition Facility
В 1960-х годах группа ученых из LLNL выдвинула гипотезу о том, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях. Эта революционная идея привела к появлению термоядерного синтеза с инерционным удержанием топлива, положив начало более чем 60-летним исследованиям и разработкам. В конце концов был создан комплекс NIF размером со спортивный стадион, где лазеры используются для создания температур и давлений, подобных тем, что возникают в ядрах звезд и планет-гигантов, а также внутри ядерных взрывов
Ударные волны от взрыва заставляют дейтериево-тритиевое топливо сжиматься до давления в сотни гигабар, что создает в его центре горячую точку с температурой около 10 миллионов кельвинов. В таких условиях экстремальная температура, сравнимая с температурой звезд, приводит к тому, что изотопы водорода начинают сливаться с образованием ядер гелия, высвобождая дополнительную энергию и создавая каскад термоядерных реакций. Термоядерные реакции синтеза производят альфа-частицы, энергия которых нагревает все остальное топливо.
3,15
мегаджоуля
было высвобождено в результате термоядерной реакции синтеза
Ученые показали, что в результате реакции было высвобождено около 3,15 мегаджоуля энергии, что более чем вдвое превышает предыдущий рекорд в 1,3 мегаджоуля. Исследователи классифицирует ее как воспламенение (англ. Ignition) — самоподдерживающую реакцию термоядерного синтеза, при которой выделяется больше энергии, чем тратится на ее поддержание. Чтобы добиться безубыточной реакции синтеза, физики внесли изменения в ход эксперимента, основываясь на результатах предыдущих исследований. Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим.
До коммерческого получения термоядерной энергии еще далеко
Пока что о коммерческом получении термоядерной энергии речь не идет. Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени. Таким образом, NIF не является установкой для эффективного производства энергии, а служит лишь для экспериментального доказательства самой возможности воспламенения. Многие специалисты сомневаются, что сам подход с использованием лазеров может стать основой для получения термоядерной энергии из-за множества сложных технических проблем.
В NIF используется инерциальный управляемый термоядерный синтез (ICF), когда реакция инициируется путем теплового сжатия мишеней размером с булавочную головку с помощью лазеров. Однако чтобы доказать, что тип синтеза, проводимый в NIF, может быть жизнеспособным методом производства энергии, эффективность выхода — высвобождаемая энергия по сравнению с энергией, которая идет на создание лазерных импульсов — должна вырасти в 100 и более раз.
Теоретически проблемы, связанные с низкой эффективностью лазерного нагрева, могут быть решены путем повышения скорости испускания импульсов и быстрого отвода тепла и мусора из камеры для запуска следующей мишени. Также могут быть использованы новые конструкции, где подачу энергию осуществляют лазерные диоды, производящие энергию в диапазоне частот, которые сильно поглощаются стенками хольраумов. Однако при этом остаются такие факторы, влияющие на экономическую целесообразность, как стоимость топлива и мишеней.
Ливерморская национальная лаборатория обошла ITER
Наряду c ICF существует еще один способ проведения термоядерного синтеза, называемый магнитным удержанием плазмы. Он проводится в токамаках — тороидальных установках, где нагретая до экстремальных температур плазма удерживается с помощью мощных магнитных полей. Первый в истории экспериментальный термоядерный реактор ITER на базе токамаков строится на юго-востоке Франции в регионе Прованс — Альпы — Лазурный Берег. Масштабный проект начал разрабатываться с середины 1980-х годов, а завершить грандиозную стройку планируется в 2025 году.
Также как и в инерциальном термоядерном синтезе, в основе работы реактора ITER будет лежать термоядерная реакция слияния изотопов водорода, дейтерия и трития с образованием гелия и высокоэнергетического нейтрона. Для этого дейтерий-тритиевая смесь должна быть нагрета до температуры более 100 миллионов градусов, что в пять раз превышает температуру Солнца. Планируется, что эксперименты по нагреву плазмы для запуска энергоэффективных термоядерных реакций начнутся только в 2035 году. В то же время инженерные задачи и проблемы, с которыми специалисты сталкиваются при строительстве ITER, отличаются от тех, что возникают в ICF. Одной из них является, например, предотвращение контакта высокотемпературной плазмы со стенками установки.