Физики застали сверхпроводники за игрой в «Дженга»

Изображение: Nicolle R. Fuller

Ученым Великобритании, США, Иордании и Канады удалось, по их словам, добиться существенного прогресса в понимании механизма возникновения высокотемпературной сверхпроводимости. Свое исследование авторы опубликовали в журнале Nature, кратко с ним можно ознакомиться на сайте Кембриджского университета.

В своей работе ученые исследовали электронные конфигурации нормальных и сверхпроводящих состояний недодопированных высокотемпературных сверхпроводников (ВТСП) на основе купратов. В результате экспериментов физикам удалось локализовать очаг возникновения так называемых электронных карманов, и таким образом найти области в образце, которые отвечают за формирование сверхпроводящего состояния. Также исследователи обнаружили необычную геометрию распределения карманов, в простейшем случае она похожа на стопку блоков из настольной игры «Дженга». Объединение «карманов» в большую поверхность Ферми соответствует переходу образца в сверхпроводящее состояние (постройке башни из игры «Дженга»), а его переход в нормальное состояние — разрушению башни из «Дженга».

В исследованиях ученые помещали образцы купратов в сильное магнитное поле. Магнитная индукция поля, способного подавить сверхпроводимость у ВТСП в образцах, достигала значений порядка ста тесла — это примерно в миллион раз больше индукции магнитного поля Земли.

Образцы, с которыми ученые проводили эксперименты, купраты — допированные специальным образом соединения оксида меди. Само допирование применяется для изменения электропроводящих свойств твердого тела, в данном случае — оксида меди, который вместе с пероксидом бария образует специальную слоистую структуру. Такая структура приводит к зависимости свойств образующегося кристалла от взаимной ориентации слоев (анизотропии), и в некоторых случаях позволяет управлять характеристиками нового соединения.

Сверхпроводимость — обращение в ноль электрического сопротивления при достижении проводником некоторого значения температуры, называемой критической. Обычная (низкотемпературная) сверхпроводимость связана с особым строением кристаллической решетки твердого тела, которое проявляется при низких температурах около абсолютного нуля из-за прекращения теплового движения атомов вещества, и образованием куперовских квазичастиц — связанных пар электронов.

ВТСП имеют отличающиеся от низкотемпературных сверхпроводников свойства, прежде всего, квазидвумерность и многозонность. Эти свойства приводят к появлению сверхпроводимости при температурах до -243 градусов Цельсия (или до -135 градусов, как в работе ученых). Двумерность обусловлена слоистой структурой сверхпроводника, а многозонность — различием в организации кристаллических решеток слоев и их взаимодействием.

Ученые надеются, что материалы, имеющие структуру, аналогичную исследуемым, проявят хорошие сверхпроводящие свойства. Работа физиков вселяет оптимизм в перспективы изучения высокотемпературной сверхпроводимости в целом, исследование которой является одной из важнейших задач современной физики конденсированного состояния вещества.

Лента добра деактивирована.
Добро пожаловать в реальный мир.
Бонусы за ваши реакции на Lenta.ru
Как это работает?
Читайте
Погружайтесь в увлекательные статьи, новости и материалы на Lenta.ru
Оценивайте
Выражайте свои эмоции к материалам с помощью реакций
Получайте бонусы
Накапливайте их и обменивайте на скидки до 99%
Узнать больше