Ученые Центра практического искусственного интеллекта Сбербанка вместе с другими российскими и международными исследователями разработали инновационный подход к мониторингу состояния изоляторов воздушных линий электропередачи.
Статья с результатами исследования Supervised Learning based Method for Condition Monitoring of Overhead Line Insulators using Leakage Current Measurement («Метод обучения с учителем для мониторинга состояния изоляторов воздушных линий электропередачи на основе измерения тока утечки») опубликована в престижном журнале Engineering Applications of Artificial Intelligence (Q1).
Метод использует данные тока утечки и напряжения для прогнозирования пробоя изоляторов. Алгоритм работает в два этапа: сначала классифицирует состояние поверхности как сухое или влажное, затем оценивает риск аварии с точностью классификации более 98 процентов и ошибкой прогнозирования пробоя менее 1,16 процента Эти показатели значительно превосходят традиционные методы диагностики, такие как визуальный осмотр или инфракрасные камеры, которые требуют значительных ресурсов и не всегда точны. Для реализации метода была использована открытая библиотека LightAutoML, разработанная в Центре практического искусственного интеллекта Сбера.
Разработка особенно важна для энергетических компаний, поскольку позволяет перейти от планового обслуживания к предиктивным ремонтам, что может помочь сократить расходы и повысить надежность электроснабжения. Для научного сообщества метод открывает новые возможности анализа состояния электрооборудования, а для общества в целом означает снижение количества аварийных отключений, особенно в регионах с высокой влажностью и загрязненным воздухом.
«Это исследование вносит весомый вклад в цифровизацию энергетики. Мы показали, что машинное обучение не только может предсказывать аварии, но и делает это с рекордной точностью. Метод работает на реальных данных и учитывает ключевые факторы риска — загрязнение и влажность. Внедрение таких решений позволит энергокомпаниям снизить затраты на обслуживание и повысить надежность сетей. Мы уже видим интерес со стороны отрасли и планируем дальнейшие исследования в этом направлении», — отметил директор Центра практического искусственного интеллекта Сбербанка Глеб Гусев.
Проведенная работа также создает основу для интеллектуальных энергосистем будущего, считают авторы. По их словам, метод можно адаптировать для различных типов изоляторов и уровней напряжения, а это делает его универсальным инструментом повышения устойчивости электросетевой инфраструктуры.