Аттрактор и бабочка

Памяти Эдварда Нортона Лоренца

Аттрактор Лоренца. Изображение получено с помощью программы Fractint for Windows.

В 1961 году метеоролог и математик Эдвард Лоренц, скончавшийся 16 апреля 2008 года, ввел в созданную им компьютерную модель погоды данные, округлив их не до шестого, а до третьего знака после запятой. В результате был сформулирован эффект бабочки, открыт один из странных аттракторов, обнаружена непредсказуемость поведения многих детерминированных систем и, в конечном итоге, создана теория хаоса.

Предыстория: демон Лапласа

В 1814 великий французский ученый Пьер-Симон Лаплас создал демона, которому суждено было на много лет стать предметом научных дискуссий. Вымышленный демон знал положение и скорость каждой частицы во Вселенной в каждый момент времени и, владея всеми физическими законами, мог предсказать будущее каждой частицы и описать ее прошлое.

Вопрос: мыслим ли такой демон хотя бы теоретически? Успехи науки Нового времени наводили на мысль, что да: орбиты планет были рассчитаны, появления комет – предсказаны, случайные события – описаны теорией вероятности.

В дальнейшем, однако, демон Лапласа подвергся жесткой критике. После развития квантовой механики и открытия принципа неопределенности Гейзенберга (нельзя точно измерить одновременно скорость и координаты частицы) стало понятно, что квантовые системы демону неподвластны: в них есть принципиальная непредсказуемость.

Впоследствии также отмечалось, что существование демона противоречило бы законам термодинамики, что ему в принципе не хватило бы для знаний и вычислений информационных мощностей, даже используй он все ресурсы Вселенной.

Однако демон не сдал позиции полностью. В самом деле, представим себе полностью детерминированную (предопределенную, лишенную случайности) систему (классическую, без квантовых эффектов). Если мы знаем все законы, управляющие ее поведением (будь они сколь угодно сложны), знаем все необходимые параметры и обладаем необходимыми вычислительными мощностями (то есть под рукой есть демон Лапласа – читай: суперкомпьютер), то уж для такой-то системы мы сможем полностью предсказать поведение?

Есть одна оговорка. Все наши измерения будут содержать какую-нибудь ошибку. Переменные, хранящиеся в памяти компьютера, будут иметь ограниченную точность. То есть придется пользоваться приблизительными данными. Ну и ладно: нам не нужна бесконечная точность, вполне достаточно приблизительных предсказаний. Исходные данные содержат ошибку в пятом знаке? Ошибка предсказания в пятом знаке нас вполне устроит.

Итак, можно ли, например, предсказывать погоду? Хотя бы примерно? Хотя бы на каком-то ограниченном участке, но на более-менее приличный срок?

Три знака после запятой

Эдвард Лоренц с детства увлекался погодой и математикой. Во время Второй мировой войны стал метеорологом ВВС США, после продолжил изучать теоретические основы метеорологии в Массачусетском технологическом институте, а также стал заниматься довольно экзотическим по тем временам делом – пытаться научиться прогнозировать погоду с помощью компьютерных моделей.
Эдвард Лоренц. Фото с сайта Американского физического института.
Эдвард Лоренц. Фото с сайта Американского физического института.

В его распоряжении находилась вычислительная машина Royal McBee. В 1960 году Лоренц создал упрощенную модель погоды. Модель представляла собой набор чисел, описывавший значение нескольких переменных (температуры, атмосферного давления, скорости ветра) в данный момент времени. Лоренц выбрал двенадцать уравнений, описывавших связь между этими переменными. Значение переменных в следующий момент времени зависело от их значения в предыдущий момент и рассчитывалось по этим уравнениям. Таким образом, модель была полностью детерминирована.

Коллеги Лоренца от модели пришли в восторг. Машине скармливались несколько чисел, она начинала выдавать ряды чисел (впоследствии Лоренц научил ее рисовать несложные графики), описывающие погоду в некотором воображаемом мире. Числа не повторялись – они порой почти повторялись, система как будто воспроизводила старое свое состояние, но не полностью, циклов не возникало. Словом, искусственная погода была плохо предсказуема, причем характер этой непредсказуемости (апериодичность) был примерно такой же, какой и у погоды за окном. Студенты и преподаватели заключали пари, пытаясь угадать, каким будет состояние модели в следующий момент.

Зимой 1961 года Лоренц решил подробнее изучить уже построенный машиной график изменения одной из переменных. В качестве начальных данных он ввел значения переменных из середины графика и вышел отдохнуть. Машина должна была бы точно воспроизвести вторую половину графика и продолжить строить его дальше. Однако вернувшись, Лоренц обнаружил совершенно другой график. Если в начале он еще более-менее повторял первый, то к концу не имел с ним ничего общего.

Расхождение двух графиков погоды, берущих начало из одной точки. Распечатка Лоренца 1961 года, воспроизведенная в книге Джеймса Глейка
Расхождение двух графиков погоды, берущих начало из одной точки. Распечатка Лоренца 1961 года, воспроизведенная в книге Джеймса Глейка "Хаос: Создание новой науки" (СПб., "Амфора", 2001).

Получалось, что модель, из которой полностью устранена случайность, при одних и тех же начальных значениях выдает совершенно разные результаты. Машина не сломалась и считала все правильно, Лоренц не опечатался при вводе данных.

Разгадка нашлась довольно быстро: в памяти машины значения переменных хранились с точностью до шести знаков после запятой (...,506217), а на распечатку выдавалось только три (...,506). Лоренц, разумеется, ввел округленные значения, резонно предположив, что такой точности вполне достаточно.

Оказалось, что нет. "...<П>овалились маленькие костяшки домино... большие костяшки... огромные костяшки, соединенные цепью неисчислимых лет, составляющих Время", – написал в 1952 году в знаменитом рассказе "И грянул гром" Рэй Брэдбери. Примерно это же произошло в модели Лоренца. Система оказалась исключительно чувствительной к малейшим воздействиям на нее.

Эффект бабочки

Это наблюдение, вкупе со многими другими открытиями, привело к подробному изучению детерминированного хаоса – иррегулярного и непредсказуемого поведения детерминистских нелинейных динамических систем (определение Родерика Дженсена из Йельского университета), явно беспорядочного, повторяющегося поведения в простой детерминистской системе, похожей на работающие часы (определение Брюса Стюарта из Брукхевенской национальной лаборатории США).

Откуда в детерминированной системе хаос и непредсказуемость? От сильной чувствительности к начальным условиям. Малейшее воздействие, от которого невозможно избавиться – округление переменной (если это теоретическая модель), ошибка измерения (если это исследование реальной системы) – и система ведет себя совершенно по-другому.

Лоренц приводил наглядный пример: если погода действительно относится к классу настолько чувствительных систем (разумеется, не все системы такие), то взмах крыльев чайки может вызвать заметные изменения погоды. Впоследствии чайка была заменена бабочкой, а в 1972 году появилась работа "Предсказуемость: может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?".

Так родился знаменитый термин "эффект бабочки", отсылавший и к рассказу Брэдбери и, удивительным образом, к следующему открытию Лоренца – странному аттрактору, названному в его честь.

Неожиданная структура

На первый взгляд, открытие относилось скорее к разряду плохих новостей: многие системы, несмотря на кажущуюся детерминированность, ведут себя совершенно непредсказуемо. Однако Лоренц не остановился на достигнутом и стал искать порядок в случайности. Казалось, где-то он должен быть: ведь неслучайно система демонстрировала апериодическое поведение, почти повторяя время от времени уже возникавшее ранее состояние.

Лоренц построил похожую, но более простую модель из трех уравнений с тремя переменными. Модель описывала конвекцию в газе и жидкости, а также поведение несложного механического устройства – водяного колеса Лоренца (см. иллюстрацию). Под напором воды, наполняющей емкости (и вытекающей из них сквозь небольшие отверстия), колесо ведет себя удивительно сложным образом: замедляет вращение, ускоряет его, начинает вращаться в другую сторону, останавливается – в общем, как и положено уважающей себя хаотической системе.

Водяное колесо Лоренца. Изображение с сайта ast.cam.ac.uk. Кликните на картинку, чтобы увидеть ее целиком.
Водяное колесо Лоренца. Изображение с сайта ast.cam.ac.uk. Кликните на картинку, чтобы увидеть ее целиком.

Уравнения выглядели следующим образом
dx/dt = s(y - x)
dy/dt = x(r - z) - y
dz/dt = xy - bz
s=10, r=28, b=8/3. Можно брать и другие значения параметров, однако не при всех система будет демонстрировать хаотическое поведение.

Для наглядного отображения поведения системы Лоренц использовал не обычный временной график, а фазовый портрет. Три числа, описывающие состояние системы, обозначали координаты точки в трехмерном пространстве. С каждым шагом на фазовом портрете появлялась новая точка.

Если бы система рано или поздно приходила к полной устойчивости, добавление точек рано или поздно должно было полностью остановиться. Если бы она приходила к периодическим колебаниям, линия из точек образовала бы кольцо. Наконец, если в поведении системы не было бы вообще никаких закономерностей, на фазовом портрете могло бы появиться что угодно.

Результат оказался совершенно неожиданным. Объект, который появился на портрете (см. главную иллюстрацию), располагался в определенных границах, не пересекая их. Он обладал определенной структурой – напоминал два крыла бабочки – но в ее пределах был совершенно неупорядочен. Он не прекращал "развиваться": ни одна новая точка не совпадала с предыдущей, фазовый портрет можно было строить бесконечно. Переход от одного из крыльев к другому соответствовал началу вращения колеса в другую сторону.

Такие объекты – странные аттракторы – сыграли большую роль во фрактальной геометрии и теории хаоса. "Крылья бабочки" получили название "аттрактор Лоренца".

Эффект бабочки: фазовые портреты для трех моментов времени. Желтая и синяя линия представляют собой траектории, соответствующие начальным наборам данных, в которых значения x отличались на 10-5. Сначала линии почти совпадают (желтая закрывает с
Эффект бабочки: фазовые портреты для трех моментов времени. Желтая и синяя линия представляют собой траектории, соответствующие начальным наборам данных, в которых значения x отличались на 10-5. Сначала линии почти совпадают (желтая закрывает с

Теория хаоса

Наблюдения Лоренца заставляют пережить два шока. Первый – оказывается, демон Лапласа может быть бессильным даже перед не очень сложной детерминированной системой. Там, где все, казалось бы, предопределено, неожиданно возникает хаос.

Второй шок – в этом хаосе, оказывается, спрятан порядок. Неожиданный, странный, плохо понятный, представляющий собой "тонкую структуру, таящуюся в беспорядочном потоке информации" (Дж. Глейк), но тем более интересный. Аттрактор Лоренца не решает проблемы предсказания, но уже само его существование достойно изучения.

Поисками подобных проявлений порядка в хаосе и занимается сравнительно молодая наука – теория хаоса. Она возникла не мгновенно и не имеет одного создателя. Ее основы были заложены в работах Пуанкаре, Колмогорова, Арнольда, Ляпунова, Ландау, Смэйла, Мандельброта, Фейгенбаума и десятков других талантливых ученых, либо увидевших то, что до них никто не видел, либо сумевших описать то, что увидели другие.

Одним же из ключевых моментов (далеко не сразу, кстати, оцененным по достоинству) в ее возникновении считается день, когда Эдвард Нортон Лоренц, любитель погоды и упорный искатель странного, ввел в свою модель значения переменных, округленные до трех знаков после запятой.

Обсудить
00:06 Сегодня
Арест Временного правительства

«Главным был вопрос о войне»

Как Временное правительство довело Россию до революции: спецпроект «Ленты.ру»
00:10 15 ноября 2016

Зина без резины

Как геи, солдаты и проститутки разнесли ВИЧ по СССР
Сергей Лавров и Джон Керри, архивВ центре внимания
Почему Лавров стал самым популярным политиком на СМИД ОБСЕ в Гамбурге
«Верните наше будущее!»
О чем мечтают альтернативные правые — друзья Трампа и враги политкорретности
От ковбоя до рака легких
Сложная история отношений американцев и табачной продукции
Крым с навигатором и без
Как туристы верят спутникам, а местные жители над ними смеются
Рыночные отношения
Лучшие рождественские ярмарки Европы
Просто ми-ми-ми
Победители фотопремии Nature Photographer of the Year
Подмосковные вечера
Как провести каникулы недалеко от российской столицы
Дженис ЙостимаСама себе модель
История успеха девушки из провинции с миллионом подписчиков в сети
Повторяй за мной
Чернокожая модель восстала против стандартов красоты
Мохаммед, похититель Рождества
Елки и Санта-Клаусы в Европе оказались в опале
Кровавая пенсия
Чем занимаются знаменитые преступники, ушедшие на покой
Видео: Самый быстрый «МАЗ»
Дакаровский «МАЗ», десантный корабль на воздушной подушке и заброшенная авиабаза
Кёрлинг по-крупному
Массовые аварии и другие скользкие видео в честь прихода зимы
Самые продаваемые автомобили в России
25 самых популярных автомобилей ноября 2016 года
Чех, два японца и кореец: выбираем лучший компактный седан
Длительный тест четырех компактных седанов. Часть 3
От роддома до могилы
Тайны фамильных особняков, в которых живут поколения фермеров и журналистов
Извращенные вкусы
Откровения риелторов о клиентах-геях, богеме, политиках и шизофрениках
Пассажиры в зале ожидания в аэропорту СочиКвартирный вопрос их испортил
Как обманывают приезжих нечистоплотные москвичи
Халявщики и партнеры
Застройщики и банки шокируют заемщиков ипотечными условиями