Российский графен

Работа ученых из РАН попала на обложку топового журнала Английского королевского общества

Фото: Science Picture Co. / Corbis

Российские ученые из Института органической химии имени Зелинского Российской академии наук под руководством профессора Валентина Ананикова разработали эффективный метод визуализации дефектов на поверхности графена и других углеродных материалов, позволяющий за короткое время локализовать тысячи дефектов с помощью стандартной техники микроскопического исследования. Это важно для понимания физико-химических и механических свойств материалов и является одной из основных задач современных нанотехнологий.

Метод, предложенный учеными, основан на свойстве наночастиц металлов, которые избирательно адсорбируются по краям дефектов, в результате чего контуры дефектов «прочерчиваются» цепочками металлических наночастиц, и их видно в электронный микроскоп.

С помощью этого подхода химикам удалось установить, что на поверхности углеродных материалов дефекты располагаются не хаотически, а образуют упорядоченные структуры.

Работа выполнена учеными с участием международного исследовательского коллектива, а ее результаты опубликованы в журнале Chemical Science Королевского химического общества Великобритании и отмечены на его обложке. Авторы исследования рассказали «Ленте.ру» о своей работе.

По следам графеновых дефектов

Экспериментальные исследования свойств графена, проведенные в последнее десятилетие, спровоцировали настоящий «графеновый бум». Сегодня исследования графена и других двумерных материалов на его основе можно условно выделить в отдельную область нанотехнологий.

Особенность графена — высокая подвижность носителей заряда. Графен отличается высочайшей теплопроводностью, электропроводностью и способностью изменять эти свойства в зависимости от модификации своей структуры и от природы внешних воздействий. Поэтому графен и его производные часто рассматриваются как перспективные компоненты электронных устройств нового типа и химических сенсоров.

Например, присоединение к плоскости графена различных функциональных групп не только изменяет электронную проводимость этого материала, но и обеспечивает ему избирательное сродство к определенным молекулам из внешней среды, в том числе биологическим. Свойства графена можно изменить и за счет замещения части его атомов углерода на другие атомы, в частности кремний или германий.

Графен — родоначальник целого класса двумерных структур. Условно этот класс разделяют на две группы. К первой группе относятся структуры на основе самого графена, функционализированного графена (то есть модифицированного различными химическими группами), гибридных графеновых материалов (например, гибриды графена и углеродных нанотрубок). Вторая группа — это когда графен выступает в роли только структурного образца, прообраза, но непосредственного отношения к графену эти структуры не имеют. Например, силицен — структурный аналог графена, состоящий не из атомов углерода, а из атомов кремния.

Важнейший способ управления свойствами двумерных материалов и, в частности, графена — направленное введение в их двумерную сетку структурных дефектов. «Идеальный» графен состоит только из строго упорядоченных шестичленных циклов. Однако отклонения от этой идеальности дают возможность регулировать как физические, так и химические свойства графена.

Неуловимые дефекты

Прямое наблюдение дефектов графена чрезвычайно затруднено. Более того, некоторые дефекты являются динамическими, то есть способны менять свое местоположение и «мигрировать» по поверхности углеродного материала. В результате дефекты могут самоорганизовываться — сливаться или выстраиваться вдоль определенного направления. В работе было показано, что повышенную реакционную способность графеновых дефектов можно использовать для их локализации в пространстве и сортировки по химической активности. Методика поиска графеновых дефектов проста и поэтому эффективна.

На первой стадии готовится раствор комплекса палладия в органическом растворителе. При небольшом нагревании в этом растворе образуются наночастицы палладия. Добавление углеродного материала приводит к быстрой адсорбции наночастиц палладия на его поверхности, и этот процесс легко контролируется даже визуально: темно-красный раствор превращается в бесцветный.

Затем образец углеродного материала можно исследовать под микроскопом. На микрофотографиях отчетливо видно, что наночастицы группируются на точечных дефектах или выстраиваются в линии вдоль линейных дефектов. Более активные дефекты связываются с наночастицами металла более прочно. Значит, есть возможность не только установить пространственное положение дефектов, но и оценить их химическую активность.

В результате исследований было установлено, что на одном квадратном микрометре поверхности углеродного материала может быть до двух тысяч дефектов (реакционноспособных центров). При этом в некоторых случаях дефекты располагаются по поверхности в виде упорядоченных структур.

Предложенный метод — эффективный инструмент подбора условий для получения графеновых материалов с заданным пространственным расположением дефектов определенной химической активности. А это открывает путь для создания новых типов наноструктурированных катализаторов, в которых молекулы реагентов размещаются не хаотически, а только на выделенных и упорядоченных местах, то есть подвергаются предварительной организации. Это еще один контролируемый способ получения новых графеновых продуктов с заданными свойствами.

Дорогостоящее соревнование

«Исследование графеновых систем — чрезвычайно сложная задача на передовом крае современной науки. Провести работу подобного уровня нам удалось только при поддержке Российского научного фонда, обеспечившего достойное финансирование этого проекта», — подчеркнул руководитель работы профессор Анаников.

Помимо финансирования самих исследований, для графеновой гонки крайне важен доступ к новейшему оборудованию. Как правило, первыми добиваются успеха научные группы, располагающие уникальными установками. Наши ученые в своей работе использовали целый комплекс из высокопроизводительных установок — синхротрон во Франции, высокоразрешающий электронный микроскоп в Японии и мощнейший суперкомпьютер в Московском государственном университете.

Выполненное на суперкомпьютере молекулярное моделирование — принципиальный момент, поскольку теоретическое исследование представляет независимое доказательство природы наблюдаемых явлений. К счастью для российских ученых, суперкомпьютер МГУ, входящий в верхние строчки мирового рейтинга, обеспечивает такую возможность и делает российскую науку более конкурентноспособной в столь сложной и динамичной области науки.

Дефекты неизбежны и даже необходимы

Дефекты кристаллов — важнейший объект изучения физики и химии твердого тела. От концентрации дефектов напрямую зависят эксплуатационные характеристики изделий. Например, дефекты уменьшают механическую прочность материала, изменяют его токопроводящие свойства. В полупроводниковой промышленности стараются получить кристаллы полупроводниковых материалов с как можно меньшим количеством дефектов.

Если в области материаловедения дефекты играют, скорее, негативную роль и от них стараются по возможности избавиться, то в химии дефекты кристаллов весьма полезны. Так, в гетерогенном катализе химическая реакция происходит на твердой поверхности частицы катализатора, и именно дефекты поверхности зачастую выполняют функцию каталитических центров, то есть мест, где и происходит каталитическая реакция. Поэтому для химии и химической технологии умение контролируемо управлять дефектами поверхности — это путь к созданию катализаторов с заданной каталитической активностью и селективностью (то есть способностью ускорять именно целевую реакцию из всего множества реакций, осуществимых с данным набором реагентов).

Такие каталитические системы активно используются в настоящее время как в крупнотоннажной химической промышленности (переработка нефти и газа, получение топлива), так и в тонком органическом синтезе (синтез лекарств и биологически активных соединений).

Обсудить
00:02 Сегодня
В. Навозов. Крещение Руси

«Его вряд ли воспитывала бабка»

Кем на самом деле был основатель Киевской Руси князь Владимир
От ковбоя до рака легких
Сложная история отношений американцев и табачной продукции
Маттео РенциNo, синьор Ренци!
Итальянские избиратели не поддержали реформы премьер-министра
Бирманские солдаты на руинах сожженного дома в столице штата РакхайнВас здесь не стояло
Из-за чего власти Мьянмы конфликтуют с мусульманами-рохинджа
Пекин«Все меньше остается от старого Пекина»
Как меняется жизнь китайской столицы при Си Цзиньпине
Мой воображаемый друг
Возвращение Андре Мальро в Пушкинский музей
Актеры Анастасия Марчук (Государыня Арина Абрамовна) и Виктор Раков (Комяга) в спектакле "День опричника" по произведениям Владимира Сорокина в постановке Марка Захарова в театре "Ленком". Артем Геодакян/ТАССТы меня на рассвете разбудишь
Как старшее поколение спорит с антиутопическими прогнозами в «Дне опричника»
Иван Дорн «У меня выработались антитела к политике»
Иван Дорн о перевоплощении и проверке себя
«Женские ноги должны быть длинными»
11 лучших книг года о войне, зависти и любви
Ленинаканский пробор
История парикмахерской, пережившей землетрясение в Гюмри
Дженис ЙостимаСама себе модель
История успеха девушки из провинции с миллионом подписчиков в сети
Анастасия Белокопытова «Не считала, сколько трачу в месяц»
История уроженки Рязани, переехавшей в Австрию
Мохаммед, похититель Рождества
Елки и Санта-Клаусы в Европе оказались в опале
В угол за угон
Когда детям становится скучно, они угоняют настоящие машины
Пикник на обочине
Испытываем «арктические» пикапы Toyota Hilux, у которых 10 колес на двоих
Тест: у каких малолитражек суперкары воруют фонари
Сможете ли вы узнать автомобиль по задней светотехнике
Тест нового корейского бизнес-седана
Длительный тест Kia Optima нового поколения
Халявщики и партнеры
Застройщики и банки шокируют заемщиков ипотечными условиями
Горите в аду
Получить имущество по наследству становится все труднее
Конец близок
Уходящий 2016 год может стать последним для ипотеки
Пассажиры в зале ожидания в аэропорту СочиКвартирный вопрос их испортил
Как обманывают приезжих нечистоплотные москвичи