Правила слияния

Германия запустила мощнейший термоядерный реактор

Стелларатор Wendelstein 7-X
Стелларатор Wendelstein 7-X

В Германии 10 декабря 2015 года успешно запущен термоядерный реактор Wendelstein 7-X, в котором удержание плазмы происходит по принципу стелларатора. На проект стоимостью более миллиарда евро немцы возлагают большие надежды. Как и физики, которые связывают будущее энергетики с управляемым термоядерным синтезом.

Рост населения Земли, исчерпание природных ресурсов и загрязнение окружающей среды — все это приводит к необходимости использовать альтернативные источники энергии. Управляемый термоядерный синтез в этом случае представляется святым Граалем энергетики, поскольку топливом для него является тяжелая вода, содержащая изотопы водорода — дейтерий и тритий.

При использовании дейтерия, содержащегося в бутылке воды, выделится столько же энергии, сколько при сжигании бочки бензина: калорийность термоядерного топлива в миллион раз выше любого из современных неядерных источников энергии. При этом окружающей среде будет нанесен минимальный вред, а топливо для термоядерной электростанции доступно всем без исключения странам.

В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (образования гелия в результате слияния дейтерия и трития), в отличие от обычных (ядерных) реакторов, где инициируются процессы распада тяжелых ядер на более легкие. Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (тороидальная камера с магнитными катушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, но в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, а в стеллараторе магнитное поле наводится внешними катушками. Последнее является главным отличием стелларатора от токамака и обуславливает сложную конфигурацию в нем магнитного поля.

В стеллараторе магнитные поверхности, удерживающие плазму в состоянии равновесия, создаются сложной системой внешних проводников на вакуумной камере (внутри которой и находится топливо), из-за чего конечная форма плазменного шнура так далека от идеальной тороидальной формы. Между тем в токамаке удержание плазмы происходит благодаря магнитному полю от вихревого электрического поля. Это означает, что токамак может работать (без вспомогательных устройств) исключительно в импульсном режиме, тогда как стелларатор способен в течение длительного времени работать в непрерывном (стационарном) режиме.

Конструкцию стелларатора впервые предложил в 1951 году американский физик Лайман Спитцер. Свое название реактор получил от латинского stella — звезда, поскольку внутри реактора температура сравнима с достигаемыми внутри ядра Солнца. Первоначально стелларатор считался популярным кандидатом для термоядерного реактора, однако впоследствии его потеснила концепция токамака, предложенная в 1951 (и рассекреченная в 1956 году) советскими физиками Андреем Сахаровым и Игорем Таммом.

Термоядерный реактор из СССР был проще и дешевле стелларатора. Во многом это связано с необходимостью высокоточных расчетов конфигурации магнитных полей для стелларатора, которые для Wendelstein 7-X были произведены на суперкомпьютере, а также ограниченностью материалов для строительства установки. Споры о том, что лучше — стелларатор или токамак, — не утихают до сих пор, а выяснение того, кто в чем прав, обходится налогоплательщикам в сотни миллионов долларов.

В Германии введен в строй именно стелларатор. Установка Wendelstein 7-X находится в немецком Институте физики плазмы Общества имени Макса Планка в городе Грайфсвальд. Реактор состоит из 50 сверхпроводящих ниобий-титановых катушек около 3,5 метров в высоту и общим весом около 425 тонн, способных создавать магнитное поле индукцией три тесла, удерживающее плазму с температурой 60-130 миллионов градусов Цельсия (это в несколько раз выше, чем температура в центре солнечного ядра). Большой радиус плазмы равен 5,5 метра, малый радиус — 0,53 метра. Объем плазмы может достигать 30 кубических метров, а ее плотность — три на десять в двадцатой степени частиц на кубический метр. Вся конструкция окружена криостатом (прочной теплоизолирующей оболочкой) диаметром 16 метров.

Перечисленные параметры делают Wendelstein 7-X самым мощным стелларатором в мире. Его ближайший конкурент — LHD (Large Helical Device) — расположен в японском городе Токи. В России единственный действующий стелларатор «Л-2М» находится в Институте общей физики Российской академии наук и из-за ограниченного финансирования продолжительное время не подвергается модернизации. Кроме перечисленных, стеллараторные возможности имеются и в других странах, в частности в Австралии и на Украине.

Зеленый свет на возведение Wendelstein 7-X правительство Германии дало в 1993 году, в следующем году в Грайфсвальде был создан филиал Института физики плазмы, куда перешли работать 50 сотрудников головного учреждения из Гархинга. В настоящее время над Wendelstein 7-X работают более 400 человек. Возведение Wendelstein 7-X было тяжелым процессом.

Создание подобного рода установок — чрезвычайно трудная технологическая задача. Главная проблема, с которой столкнулись строители стелларатора, заключалась в нехватке сверхпроводящих магнитов, имеющих специальную геометрию и охлаждаемых гелием. К 2003 году в ходе промышленных испытаний была забракована и возвращена поставщикам примерно треть таких магнитов. В 2003 и 2007 годах проект Wendelstein 7-X был на грани закрытия. За это время его стоимость возросла по сравнению с первоначально запланированной в два раза — до 1,06 миллиарда евро. Проект Wendelstein 7-X к настоящему времени занял 1,1 миллиона человеко-часов.

В мае 2014 года Институт физики плазмы отчитался о завершении строительства стелларатора, после чего провел необходимые пусконаладочные работы и дождался согласия национального регулятора на запуск.

Свои эксперименты ученые планируют провести в три этапа. На первом этапе, начавшемся 10 декабря, физики проведут опыты с получением в реакторе гелиевой плазмы, которую нужно удерживать в равновесном состоянии 1-2 секунды. В ходе испытаний первой фазы ученые собираются проверить работу систем реактора и при возникновении неисправностей оперативно их устранять.

Выбор для начала запуска гелия обусловлен относительной легкостью (по сравнению с водородом) его перевода в состояние плазмы. На конец января 2016 года намечены испытания с водородной плазмой. После успешного завершения второй фазы экспериментов ученые надеются удерживать на Wendelstein 7-X водородную плазму в течение десяти секунд. Конечные цели проекта, которых физики хотят достигнуть на третьем этапе, — удержать плазму в реакторе до получаса и одновременно с этим добиться значения параметра β, равного 4-5 (в процентах). Это число определяет отношение давления плазмы к давлению удерживающего ее магнитного поля.

Одни из лучших результатов в этом направлении достигнуты на LHD, где (не одновременно) удалось добиться β = 4,5 со временем удержания плазмы около часа. Немецкий Wendelstein 7-X в настоящее время не является конкурентом строящегося токамака ИТЭР (Международный экспериментальный термоядерный реактор): в немецком городе Гархинге уже есть свой токамак ASDEX (Axially Symmetric Divertor Experiment) того же Общества имени Макса Планка, который до запуска Wendelstein 7-X был крупнейшим термоядерным реактором в ФРГ (в этом же городе с 1988-го по 2002 год действовал другой стелларатор — Wendelstein 7-AS). Физики, работающие на этом токамаке, как и их зарубежные коллеги, признают приоритет ИТЭР в экспериментах с управляемым термоядерным синтезом над национальной программой, так что использование ASDEX, как и Wendelstein 7-X, сводится пока лишь к отработке перспективных технологий.

Испытания, проведенные в первый день запуска стелларатора, признаны успешными. Физикам удалось при помощи микроволнового импульса мощностью 1,3 мегаватта нагреть один миллиграмм газообразного гелия до температуры в миллион градусов Цельсия и удержать полученную плазму в равновесии в течение 0,1 секунды. Ученые отследили характеристики магнитного поля полученной плазмы и запустили компьютерную систему контроля над магнитным полем. В их ближайшие задачи входит постепенное наращивание мощности излучения и повышение температуры плазмы.

В отличие от токамаков, стеллараторы являются темными лошадками — с ними проводилось меньше экспериментов, а полученные в последнее время результаты обнадеживают. В том случае если установка Wendelstein 7-X оправдает возлагаемые на нее надежды, физики сделают выводы о возможности использования стеллараторов в качестве термоядерных электростанций будущего. Так или иначе, ясно одно: получение практически неисчерпаемого источника энергии требует не только взаимодействия международного сообщества ученых и государств мира и привлечения огромных финансовых средств, но и завидного терпения и уверенности в успешности проекта. Всего этого хочется пожелать немецким исследователям.

Видео: Max-Planck-Institut für Plasmaphysik
подписатьсяОбсудить
00:01 Сегодня

Праздник школоты

С какими неприятными сюрпризами столкнулись посетители «Игромира»
00:01 19 сентября 2016
Готовящаяся к вспышке звезда Эта Киля в центре туманности Гомункул

Яркая смерть

Когда вспышка сверхновой уничтожит жизнь на Земле
17:17 30 сентября 2016
Международный инвестиционный форум «Сочи-2016»
На черноморском побережье стартует главное экономическое событие осени
«Главная цель — благополучие людей»
Президент ЦСР Павел Кадочников о новой программе экономического развития России
«Мы переживаем время возможностей»
Глава АИЖК о том, когда ставки по ипотеке упадут ниже 10 процентов
Пенсионный улучшайзинг
Смогут ли россияне накопить себе на пенсию без помощи государства
Ким КардашьянЧто угрожает Кардашьян
Семь самых ярких пранков со знаменитостями
Шедевр под носом
Самые популярные фотографии Instagram за сентябрь
Джентльмен из песочницы
10 ярких поступков детей, поставивших на место знаменитостей и политиков
Рожать нельзя помиловать
Как живет страна, где за аборт можно получить 10 лет тюрьмы
Осенний набор
Все премьеры Парижского автосалона
Париж-2016
Репортаж с Парижского моторшоу: день первый
Великий увозитель
Все, что нужно знать о новом Land Rover Discovery, в 27 фотографиях
Лошади на литры
Самые вместительные машины с моторами мощностью 600 л.с. и больше
Перешли все границы
Как провести ночь в двух странах, не выходя из комнаты
Ниже плинтуса
Снимать квартиру в Москве стало неприлично дешево
Заодно похудели
Как купить квартиру при зарплате в 60 тысяч рублей в месяц, не имея накоплений?
Кадр из мультипликационного фильма "Окно", 1966 годКупили на свою голову
За право жить в апартаментах придется ежегодно платить сотни тысяч рублей
Развод на 450 миллионов
Как выглядит самый дорогой в мире дом