Цена плоского углерода

Выходцы из России получили Нобелевскую премию по физике за графен

Карта электрической проводимости поверхности графена, полученная сканирующим туннельным микроскопом. Иллюстрация Physical Review Letters

Графен - материал, который последние шесть лет находится в центре внимания физиков-экспериментаторов во всем мире. До этого, правда, лет 40 считалось, что двумерный лист углерода - не более чем модельная абстракция, позволяющая в некоторых случаях сделать громоздкие вычисления в квантовой механике чуть более подъемными и обозримыми. Так вот, Константин Новоселов и Андрей Гейм, в настоящее время работающие в Манчестерском университете, получили Нобелевскую премию за то, что перевели графен из теоретической плоскости в практическую. Однако обо всем по порядку.

Долгая дорога к графену

Константин Новоселов (слева) и Андрей Гейм
Константин Новоселов (слева) и Андрей Гейм

Из школьной химии известно, что свойства того или иного вещества зависят не только от атомов, которые его составляют, но и от их взаимного расположения. В качестве примера обычно приводят углерод, который в случае одного расположения атомов дает хрупкий грязный графит, а в другом - твердый сияющий алмаз. Такие простые вещества, имеющие разные свойства при одинаковом составе, называют аллотропными модификациями. В этом смысле графит и алмаз - аллотропные модификации углерода.

В 60-х годах прошлого века физики стали интенсивно изучать не только трехмерные, но и двумерные аллотропные модификации. В частности, например, атомы углерода могут располагаться в одной плоскости самым простым и естественным образом - в виде гексагональной решетки (то есть решетки, у которой все ячейки - шестиугольники). Уже тогда, кстати, эта идея была не нова - например, Оскар Клейн еще в 1929 году предсказывал такому материалу необычные квантовые свойства.

В это же время предпринимались попытки получить отдельно "куски" плоского углерода, однако они не привели к успеху. В результате многие ученые решили, что получение этого материала на практике в принципе невозможно из соображений стабильности (такое в физике происходит сплошь и рядом - например, составляющие адроны кварки не существуют по отдельности).

Структура графена. Расстояние между атомами - 0,142 нанометра. Графен поглощает 2,3 процента проходящего через него света
Структура графена. Расстояние между атомами - 0,142 нанометра. Графен поглощает 2,3 процента проходящего через него света

В результате графен оставался не более чем абстракцией, удобной, например, для вычислений, ведь в случае двух измерений многие уравнения, связанные, например, с квантовой механикой, заметно упрощаются.

Первым предвестником революционного открытия Андрея Гейма и Константина Новоселова стало обнаружение фуллеренов в середине 1980-х годов. Фуллерены - это выпуклые многогранники, в вершинах которых располагаются атомы углерода. Самый известный подобный материал называется C60 - в этой модификации атомы располагаются в вершинах фигуры, которая, напоминает футбольный мяч (в математике такой многогранник называется усеченным икосаэдром). За это открытие, кстати, американцы Роберт Керл и Ричард Смелли вместе с британцем Харолд Крото получили Нобелевскую премию по химии 1996 года.

Затем, в 90-х годах, развитие техники сделало возможным изучение так называемых углеродных нанотрубок (на звание первооткрывателей этих объектов претендуют сразу несколько групп исследователей, среди которых есть и советские физики). От трубок, казалось бы, до графена рукой подать: разрезал их вдоль, развернул - вот и готов двумерный листочек углерода. Оказывается, такое действительно возможно, что и доказали ученые из Стэнфордского университета и университета Райса в 2009 году. Однако впервые "невозможный" материал был получен другим способом.

Война за первенство

Андрей Константинович Гейм родился в 1958 году в Сочи. В 1982 году закончил факультет общей и прикладной физики МФТИ, а в 1987 году защитил кандидатскую диссертацию в Институте физики твердого тела АН СССР. До 1990 года работал в Институте проблем технологии микроэлектроники и особочистых материалов, после чего уехал за границу. На момент совершения открытия (2004 год) вместе с Константином Новоселовым работал в Манчестерском университете. Сейчас трудится там же, являясь формально гражданином Голландии. Примечательно, что Гейм является лауреатом Шнобелевской премии 2000 года за изучение левитации лягушек.

Как это часто бывает в науке, Гейму и Новоселову удалось не только удивить большинство физиков, получив на практике материал, который считался нестабильным, но и опередить несколько других групп исследователей, которые буквально дышали им в затылок.

Так, например технологию пилинга (именно так называется методика, по которой работали выходцы из бывшего СССР) придумали не Гейм с Новоселовым - данный метод безуспешно пытались применить исследователи под предводительством Родни Руоффа из Техасского университета еще в 1999 году.

Далее, спустя всего два месяца после появления статьи Гейма и Новоселова ученые из Технологического университета Джорджии подали на публикацию статью, в которой тонкие листы углерода предлагалось получать выжиганием при температуре 1300 градусов по Цельсию карбида кремния. Кроме этого в это же время физики из Колумбийского университета пробовали "рисовать" подобные пленки - они прикрепляли кристалл углерода к игле силового микроскопа и водили им по поверхности. Таким образом, однако, им удалось получить пленки, толщиной в 10 углеродных слоев.

Константин Сергеевич Новоселов родился в 1974 году в Нижнем Тагиле. В 1997 году закончил МФТИ и до 1999 года работал в Институте проблем технологии микроэлектроники и особо чистых материалов, после чего уехал за границу. В настоящее время работает в Манчестерском университете. Имеет два гражданства - российское и британское.

Как же Гейм и Новоселов опередили своих соперников? Оказывается, любой человек, когда-либо писавший карандашом, помимо своей воли занимался производством графеновых листов - во время письма углерод с графитового острия отслаивается плоскими хлопьями, некоторые из которых могут оказаться толщиной всего в один атом. Именно эту идею использовали Гейм и Новоселов - они отклеивали хлопья от графита при помощи скотча, после чего переносили их на специальную подложку. В 2004 году в Science появилась статья физиков, в которой они описывали не только технологию получения графена, но и некоторые его свойства.

Будущее

Ну а дальше было то, что интересующиеся наукой люди могут наблюдать до сих пор - настоящий исследовательский бум, связанный с изучением графена.

Физики научились создавать пригодные для наноэлектроники ленты из графена. Ученые объяснили неудачи высокотемпературной сверхпроводимости. Физикам удалось заселить электронами свободные места в графене. Химикам удалось в десятки раз увеличить размер листа графена. Физики раскрыли механизм разрыва графена. Все перечисленное - это только заголовки заметок, посвященных графену, которые появились на "Ленте.ру" с начала 2010 года.

За прошедшие после открытия Гейма и Новоселова 6 лет ученые научились не только производить более или менее большие куски графена, но и обнаружили невероятный потенциал данного материала. Так, графен обладает высокой прочностью (он в 100 раз прочнее листа стали аналогичной толщины), теплопроводимостью (графен проводит тепло в 10 раз лучше меди), максимальной подвижностью электронов среди всех известных материалов, а также пригоден для создания уникальной электроники и многого другого.

Правда, почти все возможности графена пока далеки от практики - факт, который, очевидно, в Нобелевском комитете хорошо понимают (оттого и формулировка, с которой Гейму и Новоселову вручили награду, звучит как "за пионерские эксперименты, касающиеся двухмерного материала графена"). Несмотря на это за графеном будущее. Будущее, которое станет реальностью благодаря работе когда-то российских ученых Андрея Гейма и Константина Новоселова.

Обсудить
Наука и техника
 — 
00:01 18 февраля 2017

Много чести

Кто кого заборет: викинг, рыцарь или самурай — обзор For Honor
Наука и техника
 — 
00:04 Сегодня
Инквизиторы допрашивают предполагаемых еретиков

Карающая длань

Как мальтийская инквизиция наказывала христиан-вероотступников
Рекс ТиллерсонНовые лица, старые проблемы
Сергей Лавров на саммите G20 впервые встретился с новым главой Госдепа
People watch as India's Polar Satellite Launch Vehicle rocket takes off from the Satish Dhawan space center in Sriharikota, 90 kilometers (56 miles) north of Chennai, India, Monday, April 20, 2009. India on Monday launched the all-weather satellite to enhance its capability to monitor its sea and land borders and natural disasters, an official said. (AP Photo) ** INDIA OUT **Гонки на небесных ладьях
Азиатские державы рвутся в космос
Завтрак длиной в сто лет
Что ждет Россию и мир в XXII веке
Оголтелое братство
Кто убил старшего брата северокорейского лидера Ким Чен Ына
Президент Франсуа Олланд во время посещения Тео в больницеМученик Тео
Кто организовывает беспорядки на окраинах Парижа
Пенная вечеринка
Легендарная серия Half-Life обретает достойное продолжение: превью Prey
Много чести
Кто кого заборет: викинг, рыцарь или самурай — обзор For Honor
Инквизиторы допрашивают предполагаемых еретиковКарающая длань
Как мальтийская инквизиция наказывала христиан-вероотступников
Демонстрация черносотенцев в Одессе вскоре после объявления «Манифеста 17 октября»Русский порядок
Почему евреи оказались главными врагами черносотенных студентов и спортсменов
Страна оленья
Почему Якутия — главное направление для путешествий в этом году
Четыре мачты парусов
Барку «Седов» в День всех влюбленных исполняется 96 лет
Дубай-Марина. ОАЭ
© Олег Жуков / Фотобанк ЛориНа границе моря и пустыни
Почему в Дубай стремятся сотни тысяч россиян
Не наше все
Страны, где не встретить путешественников из России
«Гелик» G65 против мотоцикла Ural
Путешествие американцев на Mercedes-AMG G65 и «Урале» с коляской
7 малоизвестных ландо Mercedes
Машины с кузовом «ландо», которые выглядят лучше, чем Maybach G650 Landaulet
7 неожиданно красивых «китайцев»
Кроссоверы из Поднебесной, которые вам точно захочется купить
История культовых тюнинг-ателье: Alpina
Гид по истории самого знаменитого тюнера BMW
Дворянское гнездо
Один из самых шикарных в мире домов нашли в диком лесу
Поставили баком
Англичане сделали идеальный дом из резервуара для воды
Под гербом золотым
Экскурсия по самому дорогому съемному коттеджу России
Купить по-русски
На приобретение загородных домов и участков остался месяц