Американские астрономы обнаружили целый класс космических объектов, о которых ученые ранее не имели представления. Речь идет о карликовых черных дырах, которые занимают промежуточное положение между самыми массивными нейтронными звездами и черными дырами небольшой массы, чье существование не вызывало сомнений. Однако в последние годы появляются все больше сообщений о необычных космических явлениях, которые могут быть вызваны совершенно экзотическими объектами. «Лента.ру» рассказывает о гипотетических звездах, чье существование, возможно, никогда не будет доказано.
Звезда-вселенная
Одним из космических феноменов, чья природа окончательно не раскрыта, является гамма-всплеск — выброс большого количества энергии в виде колоссального взрыва, который наблюдается в отдаленных галактиках, в миллиарде световых лет от Земли. Несмотря на чрезвычайную редкость этих световых сигналов, астрономы постоянно регистрируют их благодаря тому, что гамма-всплески — одни из самых ярких событий во Вселенной. Существует их меньший аналог, называемый повторяющимися мягкими гамма-всплесками, и причиной могут являться нейтронные звезды с чрезвычайно сильными магнитными полями.
Гамма-всплески традиционно связывают со сверхновыми, когда массивная звезда коллапсирует в нейтронную звезду или черную дыру. Однако точный механизм их возникновения пока неизвестен, что оставляет место спекуляциям. Например, в момент своей гибели звезда, испускающая гамма-всплеск, превращается не в черную дыру, а в нечто на нее похожее — гравастар.
Гравастар внешне похож на черную дыру, которая поглощает материю, порождает высокоэнергетическое излучение, а также излучение Хокинга. Однако внутри он имеет совершенно другую метрику, называемую пространством де Ситтера, и, по сути, обычный вакуум с положительной космологической постоянной. В центре гравастара содержится темная энергия, которая препятствует сжатию внешней оболочки в сингулярность.
Типичный горизонт событий у гравастара отсутствует, его появление предотвращает ультратонкая темная «скорлупа» из практически неразрушимой материи, которая ведет себя подобно идеальной жидкости. По словам физика Эмиля Моттолы (Emil Mottola), который предположил о существовании гравастаров в 2002 году, любое тело, упавшее на гравастар, будет уничтожено и «ассимилировано» в оболочку. В то же время гравастар может переизлучать материю, что делает его даже более ярким источником энергии, чем черные дыры.
Темные пузыри
Другие гипотетические объекты — звезды темной энергии — немного похожи на гравастар. Они также рождаются при гибели массивной звезды, но коллапсирующее вещество никогда не достигает состояния сингулярности. Вместо этого материя распадается на легкие частицы и «капли» темной энергии, которая создает давление, достаточное, чтобы сдержать коллапс. При распаде частиц образуются космические лучи — потоки высокоэнергетических частиц, в том числе позитронов, которые также фиксируются учеными. Звезды темной энергии придумал в 2005 году Джордж Чаплайн (George Chapline), физик из Ливерморской национальной лаборатории имени Лоуренса (США). Он считает, что настоящих черных дыр не существует — есть только звезды темной энергии.
Как и в случае с гравастаром, поведение звезды темной энергии можно описывать с помощью квантово-механической жидкости, порождаемой конденсатом Бозе-Эйнштейна (бозе-конденсат). Конденсат Бозе-Эйнштейна представляет собой фазовое состояние вещества, образованное бозонами — частицами, которые могут находиться в одном и том же квантовом состоянии (грубо говоря, их принципиально нельзя отличить одну от другой даже по положению в пространстве). Это отличает бозоны от фермионов (например, электронов), в отношении которых действует знаменитый принцип запрета Паули, который проходят еще в школе.
Физики используют квантово-механические свойства конденсата Бозе-Эйнштейна (например, сверхтекучесть) для описания свойств искривленного пространства-времени. В модели Чаплайна у горизонта событий звезды темной материи происходит фазовый переход пространства времени в некий аналог бозе-конденсата, в результате чего объекты, падающие на горизонт событий, для внешнего наблюдателя перестают бесконечно замедляться. Вкупе с отсутствием сингулярности в центре звезды темной энергии позволяли примирить теорию относительности с квантовой механикой.
Сдержать себя
Конденсат Бозе-Эйнштейна также оказался полезным в предсказании экзотических объектов совершенно другого типа — бозонных звезд. Бозонная звезда, или Бозе-звезда, представляет собой удерживаемый собственной гравитацией гигантский сгусток конденсата. Предполагается, что такой объект может состоять из темной материи, которая образована какими-то неизвестными частицами-бозонами, например, сверхлегкими КХД-аксионами. Бозонная звезда из темной материи совершенно прозрачна и невидима, но ее возможно обнаружить по гравитационному взаимодействию с обычным веществом. Плотная бозонная звезда своим мощным гравитационным полем будет искривлять траектории световых лучей, создавая пустую область — аналог тени горизонта событий черной дыры.
Как и черная дыра, бозонная звезда будет поглощать материю, но настоящего горизонта событий у нее нет. Поскольку она прозрачна, поглощенное вещество, которое может нагреваться и испускать излучение, будет видно в центре. Вращающаяся бозонная звезда должна приобретать форму бублика.
Хотя нет доказательств, что бозонные звезды действительно существуют, они могли бы быть причиной некоторых высокоэнергетических явлений, происходящих в ядрах активных галактик. Кроме того, Бозе-звезды являются одним из кандидатов на роль скоплений темной материи, определяющих эволюцию галактик. Согласно современным представлениям, галактики формируются благодаря гравитационному притяжению масс темной материи, называемых гало. Гало окружает галактический диск и простирается далеко за его пределы, при этом являясь основным компонентом общей массы галактики. Некоторые ученые рассматривают гало темной материи как гигантскую Бозе-звезду.
Между светом и тьмой
Еще одним объектом, состоящим из гипотетических частиц, является преонная звезда. Преоны — это частицы, из которых могут состоять кварки. Преонные звезды обладают большей плотностью, чем нейтронные звезды, но все еще неспособны коллапсировать в черную дыру. В диаметре они могут достигать одного метра (если содержат массу ста планет Земля) или быть размером с горошину (вмещают массу Луны).
Также промежуточное место между нейтронными звездами и черными дырами занимают кварковые звезды, образующиеся при коллапсе настолько массивной звезды, что нейтроны не способны сдержать сжатие и распадаются на кварки. Кварковая звезда — это гигантская частица-нуклон. Если в ее составе присутствуют кварки с ароматом s (странные кварки), то такую звезду называют странной.
Существование подобных звезд обычно ставится под сомнение научным сообществом. Тщательное наблюдение за различными объектами позволяет исключить свойства, присущие гравастарам и другой экзотике. В новой статье, опубликованной в журнале Nature, сообщается об обнаружении объекта, который массивнее нейтронной звезды, но меньше обычных черных дыр, находящихся в диапазоне масс 5-15 Солнц. Этот объект вращается вокруг гигантской красной звезды, а его масса сравнима с 3,3 Солнца. Однако астрономы склонны полагать, что они нашли именно черную дыру, пусть и относящуюся к невиданному ранее классу карликовых черных дыр.
***
Скорее всего, во Вселенной существует (или существовало) еще множество объектов, которые не вписываются в современные представления о космосе. Некоторые из них уже обнаружены, например, субкарликовые пульсаторы (не путать с пульсарами) или необычные типы сверхновых. Возможно, они не так потрясают воображение, как гравастары, но ученым они интересны прежде всего тем, что они реальны.