Российские ученые вырастили кристаллы для гибких гаджетов

Органические полупроводниковые кристаллы
Органические полупроводниковые кристаллы

Ученые из физического факультета Московского государственного университета (МГУ) имени Михаила Ломоносова совместно с зарубежными коллегами вырастили органические полупроводниковые кристаллы, которые могут удешевить процесс создания гибких и прозрачных электронных устройств нового поколения. Результаты своего исследования авторы опубликовали в журнале Applied Materials and Interfaces, а кратко о них сообщается в пресс-релизе МГУ, поступившем во вторник, 2 февраля, в редакцию «Ленты.ру».

Обычно органические полупроводниковые кристаллы, выращенные путем кристаллизации из паровой фазы, намного предпочтительнее полученных из растворов, поскольку из пара можно получать более чистые и свободные от примесей структуры. Физики под руководством профессора Дмитрия Паращука попробовали опровергнуть популярное мнение и использовать растворное выращивание (прежде всего из-за возможности его применения в более простых и дешевых технологиях).

В качестве основного полимера ученые выбрали тиофен-фениленовые олигомеры, которые были синтезированы для них химиками из МГУ и Института синтетических полимерных материалов Российской академии наук. На основе этих молекул из раствора были выращены кристаллы и измерены их люминесцентные и электрические свойства. Новые кристаллы светили сильнее аналогов, полученных паровым методом. Квантовый выход (количество испущенных фотонов по отношению к поглощенным) достигал 60 процентов, тогда как аналоги давали не более 38 процентов.

Отличия в светимости физики объяснили тем, что при растворном выращивании в кристаллах подавляются некоторые безызлучательные каналы релаксации, забирающие на себя часть поглощенной энергии, а также другими особенностями. «Мы уже нашли причины такого высокого квантового выхода, но еще не готовы их обнародовать. Это дело нашего будущего исследования», — заявил профессор Паращук.

Кристаллы в светотранзисторах (в том числе и в органической оптоэлектронике) могут, вероятно, найти применение в оптоэлектронике. При помощи новой технологии возможно создание лазеров с электрической накачкой (управляемых электрическим током устройств). «Получить такие лазеры, которые можно "зажигать", просто подключив пленку к источнику, люди мечтают давно, но пока еще они не получены, — говорит Паращук. — Мы надеемся, что с помощью органических кристаллов мы эту цель сможем приблизить».

Органическая оптоэлектроника — стремительно развивающаяся область исследований, благодаря которой могут стать более доступными легкие, гибкие и прозрачные электронные устройства нового поколения (в частности, гаджеты), такие как органические светотранзисторы и органические лазеры с накачкой электрическим током. Из-за своей доступности органические полупроводники могут потеснить кремниевые.

Обсудить
Наука и техника00:0317 сентября
Перед парадом вермахта и Красной армии в Бресте

«Появилась бы "бандеровская Украина" под контролем Германии»

Зачем Сталин подружился с Гитлером и устроил парад Красной армии с вермахтом
01:4820 сентября
Наука и техника00:0424 сентября

Порошок, уходи

Землю ждет вторжение инопланетян и уничтожение Солнца: обзор Destiny 2
Классическая история
Душевные ролики про самые красивые спорткары XX века
Машины, которые не боятся столкновений
Забытые концепт-кары: ударопрочные «Фиаты»
Побег в будущее
Говорящие рули и электрические ретрокары: будущее по версии Jaguar Land Rover
Mazda CX-5 и Renault Koleos против VW Tiguan и Skoda Kodiaq
Четыре новых кроссовера. Один тест-драйв. Ну, вы поняли