Графен - материал, который последние шесть лет находится в центре внимания физиков-экспериментаторов во всем мире. До этого, правда, лет 40 считалось, что двумерный лист углерода - не более чем модельная абстракция, позволяющая в некоторых случаях сделать громоздкие вычисления в квантовой механике чуть более подъемными и обозримыми. Так вот, Константин Новоселов и Андрей Гейм, в настоящее время работающие в Манчестерском университете, получили Нобелевскую премию за то, что перевели графен из теоретической плоскости в практическую. Однако обо всем по порядку.
Долгая дорога к графену
Из школьной химии известно, что свойства того или иного вещества зависят не только от атомов, которые его составляют, но и от их взаимного расположения. В качестве примера обычно приводят углерод, который в случае одного расположения атомов дает хрупкий грязный графит, а в другом - твердый сияющий алмаз. Такие простые вещества, имеющие разные свойства при одинаковом составе, называют аллотропными модификациями. В этом смысле графит и алмаз - аллотропные модификации углерода.
В 60-х годах прошлого века физики стали интенсивно изучать не только трехмерные, но и двумерные аллотропные модификации. В частности, например, атомы углерода могут располагаться в одной плоскости самым простым и естественным образом - в виде гексагональной решетки (то есть решетки, у которой все ячейки - шестиугольники). Уже тогда, кстати, эта идея была не нова - например, Оскар Клейн еще в 1929 году предсказывал такому материалу необычные квантовые свойства.
В это же время предпринимались попытки получить отдельно "куски" плоского углерода, однако они не привели к успеху. В результате многие ученые решили, что получение этого материала на практике в принципе невозможно из соображений стабильности (такое в физике происходит сплошь и рядом - например, составляющие адроны кварки не существуют по отдельности).
В результате графен оставался не более чем абстракцией, удобной, например, для вычислений, ведь в случае двух измерений многие уравнения, связанные, например, с квантовой механикой, заметно упрощаются.
Первым предвестником революционного открытия Андрея Гейма и Константина Новоселова стало обнаружение фуллеренов в середине 1980-х годов. Фуллерены - это выпуклые многогранники, в вершинах которых располагаются атомы углерода. Самый известный подобный материал называется C60 - в этой модификации атомы располагаются в вершинах фигуры, которая, напоминает футбольный мяч (в математике такой многогранник называется усеченным икосаэдром). За это открытие, кстати, американцы Роберт Керл и Ричард Смелли вместе с британцем Харолд Крото получили Нобелевскую премию по химии 1996 года.
Затем, в 90-х годах, развитие техники сделало возможным изучение так называемых углеродных нанотрубок (на звание первооткрывателей этих объектов претендуют сразу несколько групп исследователей, среди которых есть и советские физики). От трубок, казалось бы, до графена рукой подать: разрезал их вдоль, развернул - вот и готов двумерный листочек углерода. Оказывается, такое действительно возможно, что и доказали ученые из Стэнфордского университета и университета Райса в 2009 году. Однако впервые "невозможный" материал был получен другим способом.
Война за первенство
Андрей Константинович Гейм родился в 1958 году в Сочи. В 1982 году закончил факультет общей и прикладной физики МФТИ, а в 1987 году защитил кандидатскую диссертацию в Институте физики твердого тела АН СССР. До 1990 года работал в Институте проблем технологии микроэлектроники и особочистых материалов, после чего уехал за границу. На момент совершения открытия (2004 год) вместе с Константином Новоселовым работал в Манчестерском университете. Сейчас трудится там же, являясь формально гражданином Голландии. Примечательно, что Гейм является лауреатом Шнобелевской премии 2000 года за изучение левитации лягушек.
Как это часто бывает в науке, Гейму и Новоселову удалось не только удивить большинство физиков, получив на практике материал, который считался нестабильным, но и опередить несколько других групп исследователей, которые буквально дышали им в затылок.
Так, например технологию пилинга (именно так называется методика, по которой работали выходцы из бывшего СССР) придумали не Гейм с Новоселовым - данный метод безуспешно пытались применить исследователи под предводительством Родни Руоффа из Техасского университета еще в 1999 году.
Далее, спустя всего два месяца после появления статьи Гейма и Новоселова ученые из Технологического университета Джорджии подали на публикацию статью, в которой тонкие листы углерода предлагалось получать выжиганием при температуре 1300 градусов по Цельсию карбида кремния. Кроме этого в это же время физики из Колумбийского университета пробовали "рисовать" подобные пленки - они прикрепляли кристалл углерода к игле силового микроскопа и водили им по поверхности. Таким образом, однако, им удалось получить пленки, толщиной в 10 углеродных слоев.
Константин Сергеевич Новоселов родился в 1974 году в Нижнем Тагиле. В 1997 году закончил МФТИ и до 1999 года работал в Институте проблем технологии микроэлектроники и особо чистых материалов, после чего уехал за границу. В настоящее время работает в Манчестерском университете. Имеет два гражданства - российское и британское.
Как же Гейм и Новоселов опередили своих соперников? Оказывается, любой человек, когда-либо писавший карандашом, помимо своей воли занимался производством графеновых листов - во время письма углерод с графитового острия отслаивается плоскими хлопьями, некоторые из которых могут оказаться толщиной всего в один атом. Именно эту идею использовали Гейм и Новоселов - они отклеивали хлопья от графита при помощи скотча, после чего переносили их на специальную подложку. В 2004 году в Science появилась статья физиков, в которой они описывали не только технологию получения графена, но и некоторые его свойства.
Будущее
Ну а дальше было то, что интересующиеся наукой люди могут наблюдать до сих пор - настоящий исследовательский бум, связанный с изучением графена.
Физики научились создавать пригодные для наноэлектроники ленты из графена. Ученые объяснили неудачи высокотемпературной сверхпроводимости. Физикам удалось заселить электронами свободные места в графене. Химикам удалось в десятки раз увеличить размер листа графена. Физики раскрыли механизм разрыва графена. Все перечисленное - это только заголовки заметок, посвященных графену, которые появились на "Ленте.ру" с начала 2010 года.
За прошедшие после открытия Гейма и Новоселова 6 лет ученые научились не только производить более или менее большие куски графена, но и обнаружили невероятный потенциал данного материала. Так, графен обладает высокой прочностью (он в 100 раз прочнее листа стали аналогичной толщины), теплопроводимостью (графен проводит тепло в 10 раз лучше меди), максимальной подвижностью электронов среди всех известных материалов, а также пригоден для создания уникальной электроники и многого другого.
Правда, почти все возможности графена пока далеки от практики - факт, который, очевидно, в Нобелевском комитете хорошо понимают (оттого и формулировка, с которой Гейму и Новоселову вручили награду, звучит как "за пионерские эксперименты, касающиеся двухмерного материала графена"). Несмотря на это за графеном будущее. Будущее, которое станет реальностью благодаря работе когда-то российских ученых Андрея Гейма и Константина Новоселова.